1. <pre id="t83ue"><tt id="t83ue"><noscript id="t83ue"></noscript></tt></pre>
      <ruby id="t83ue"></ruby>
      1. <bdo id="t83ue"><delect id="t83ue"></delect></bdo>

      2. <em id="t83ue"></em>

          大數(shù)據(jù)服務(wù)

          來源:|瀏覽次:196|2017年11月17日

          大數(shù)據(jù)概念

              "大數(shù)據(jù)"是一個體量特別大,數(shù)據(jù)類別特別大的數(shù)據(jù)集,并且這樣的數(shù)據(jù)集無法用傳統(tǒng)數(shù)據(jù)庫工具對其內(nèi)容進(jìn)行抓取、管理和處理。 "大數(shù)據(jù)"首先是指數(shù)據(jù)體量(volumes)?大,指代大型數(shù)據(jù)集,一般在10TB?規(guī)模左右,但在實際應(yīng)用中,很多企業(yè)用戶把多個數(shù)據(jù)集放在一起,已經(jīng)形成了PB級的數(shù)據(jù)量;其次是指數(shù)據(jù)類別(variety)大,數(shù)據(jù)來自多種數(shù)據(jù)源,數(shù)據(jù)種類和格式日漸豐富,已沖破了以前所限定的結(jié)構(gòu)化數(shù)據(jù)范疇,囊括了半結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)。接著是數(shù)據(jù)處理速度(Velocity)快,在數(shù)據(jù)量非常龐大的情況下,也能夠做到數(shù)據(jù)的實時處理。最后一個特點是指數(shù)據(jù)真實性(Veracity)高,隨著社交數(shù)據(jù)、企業(yè)內(nèi)容、交易與應(yīng)用數(shù)據(jù)等新數(shù)據(jù)源的興趣,傳統(tǒng)數(shù)據(jù)源的局限被打破,企業(yè)愈發(fā)需要有效的信息之力以確保其真實性及安全性。

          大數(shù)據(jù)作用
          大數(shù)據(jù)處理之一:采集
              大數(shù)據(jù)的采集是指利用多個數(shù)據(jù)庫來接收發(fā)自客戶端(Web、App或者傳感器形式等)的數(shù)據(jù),并且用戶可以通過這些數(shù)據(jù)庫來進(jìn)行簡單的查詢和處理工作。比如,電商會使用傳統(tǒng)的關(guān)系型數(shù)據(jù)庫MySQL和Oracle等來存儲每一筆事務(wù)數(shù)據(jù),除此之外,Redis和MongoDB這樣的NoSQL數(shù)據(jù)庫也常用于數(shù)據(jù)的采集。
                 在大數(shù)據(jù)的采集過程中,其主要特點和挑戰(zhàn)是并發(fā)數(shù)高,因為同時有可能會有成千上萬的用戶來進(jìn)行訪問和操作,比如火車票售票網(wǎng)站和淘寶,它們并發(fā)的訪問量在峰值時達(dá)到上百萬,所以需要在采集端部署大量數(shù)據(jù)庫才能支撐。并且如何在這些數(shù)據(jù)庫之間進(jìn)行負(fù)載均衡和分片的確是需要深入的思考和設(shè)計。
          大數(shù)據(jù)處理之二:導(dǎo)入/預(yù)處理
              雖然采集端本身會有很多數(shù)據(jù)庫,但是如果要對這些海量數(shù)據(jù)進(jìn)行有效的分析,還是應(yīng)該將這些來自前端的數(shù)據(jù)導(dǎo)入到一個集中的大型分布式數(shù)據(jù)庫,或者分布式存儲集群,并且可以在導(dǎo)入基礎(chǔ)上做一些簡單的清洗和預(yù)處理工作。也有一些用戶會在導(dǎo)入時使用來自Twitter的Storm來對數(shù)據(jù)進(jìn)行流式計算,來滿足部分業(yè)務(wù)的實時計算需求。
                 導(dǎo)入與預(yù)處理過程的特點和挑戰(zhàn)主要是導(dǎo)入的數(shù)據(jù)量大,每秒鐘的導(dǎo)入量經(jīng)常會達(dá)到百兆,甚至千兆級別。
          大數(shù)據(jù)處理之三:統(tǒng)計/分析
              統(tǒng)計與分析主要利用分布式數(shù)據(jù)庫,或者分布式計算集群來對存儲于其內(nèi)的海量數(shù)據(jù)進(jìn)行普通的分析和分類匯總等,以滿足大多數(shù)常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存儲Infobright等,而一些批處理,或者基于半結(jié)構(gòu)化數(shù)據(jù)的需求可以使用Hadoop。

                 統(tǒng)計與分析這部分的主要特點和挑戰(zhàn)是分析涉及的數(shù)據(jù)量大,其對系統(tǒng)資源,特別是I/O會有極大的占用。
          大數(shù)據(jù)處理之四:挖掘
              統(tǒng)計與分析主要利用分布式數(shù)據(jù)庫,或者分布式計算集群來對存儲于其內(nèi)的海量數(shù)據(jù)進(jìn)行普通的分析和分類匯總等,以滿足大多數(shù)常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存儲Infobright等,而一些批處理,或者基于半結(jié)構(gòu)化數(shù)據(jù)的需求可以使用Hadoop。

                 統(tǒng)計與分析這部分的主要特點和挑戰(zhàn)是分析涉及的數(shù)據(jù)量大,其對系統(tǒng)資源,特別是I/O會有極大的占用。
        許 可 證:《互聯(lián)網(wǎng)信息增值電信業(yè)務(wù)經(jīng)營許可證》編號(蒙ISP:20080001)《移動網(wǎng)信息增值電信業(yè)務(wù)經(jīng)營許可證》編號(蒙B2-420090006) 蒙ICP備:06003799號     蒙公網(wǎng)安備 15040402220079號
        聯(lián)系電話:0476-8222762 0476-8222761 18004762534 18004761534 18004762634 18004761634 傳真:0476-8222761
        電子信箱:cfhlwl@163.com 客服QQ:565109814(技術(shù)部) 2982804625(備案咨詢) 2030466526(市場部)
        首页 动漫 亚洲 欧美 日韩_av中文字幕在线亚洲_人人妻人人爽人人人人少妇少妇_五月天av電影免費在線觀看 亚洲第一精品极品 国产最新三级强a乱在线看 久久精品天天中文字幕人妻
        1. <pre id="t83ue"><tt id="t83ue"><noscript id="t83ue"></noscript></tt></pre>
          <ruby id="t83ue"></ruby>
          1. <bdo id="t83ue"><delect id="t83ue"></delect></bdo>

          2. <em id="t83ue"></em>